Positive-Indefinite Proximal Augmented Lagrangian Method and its Application to Full Jacobian Splitting for Multi-block Separable Convex Minimization Problems

نویسندگان

  • Bingsheng He
  • Feng Ma
  • Xiaoming Yuan
چکیده

The augmented Lagrangian method (ALM) is fundamental for solving convex programming problems with linear constraints. The proximal version of ALM, which regularizes ALM’s subproblem over the primal variable at each iteration by an additional positive-definite quadratic proximal term, has been well studied in the literature. In this paper, we show that it is not necessary to employ a positive-definite quadratic proximal term for the proximal ALM and the convergence can be still ensured if the positive-definiteness is relaxed to positive-indefiniteness by reducing the proximal parameter. The positive-indefinite proximal ALM is thus proposed for the generic setting of convex programming problems with linear constraints. We show that our relaxation is optimal in sense of that the proximal parameter cannot be further reduced. The consideration of positive-indefinite proximal regularization is particularly meaningful for generating larger step sizes for solving the primal subproblems of ALM. When the model under discussion is separable in sense of that its objective function consists of finitely many additive function components without coupled variables, it is desired to decompose each ALM’s primal subproblem in Jacobian manner, replacing the original primal subproblem by a sequence of easier and smaller decomposed subproblems, so that parallel computation can be applied. This full Jacobian splitting version of ALM is known to be not necessarily convergent and it has been studied in the literature that its convergence can be ensured if all the decomposed subproblems are further regularized by sufficiently large proximal terms. But how small the proximal parameter could be is still open. The other purpose of this paper is to show the smallest proximal parameter for the full Jacobian splitting version of ALM for solving multi-block separable convex minimization models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving an ADMM-like Splitting Method via Positive-Indefinite Proximal Regularization for Three-Block Separable Convex Minimization

Abstract. The augmented Lagrangian method (ALM) is fundamental for solving convex minimization models with linear constraints. When the objective function is separable such that it can be represented as the sum of more than one function without coupled variables, various splitting versions of the ALM have been well studied in the literature such as the alternating direction method of multiplier...

متن کامل

On the Proximal Jacobian Decomposition of ALM for Multiple-Block Separable Convex Minimization Problems and Its Relationship to ADMM

The augmented Lagrangian method (ALM) is a benchmark for solving convex minimization problems with linear constraints. When the objective function of the model under consideration is representable as the sum of some functions without coupled variables, a Jacobian or Gauss-Seidel decomposition is often implemented to decompose the ALM subproblems so that the functions’ properties could be used m...

متن کامل

On Full Jacobian Decomposition of the Augmented Lagrangian Method for Separable Convex Programming

The augmented Lagrangian method (ALM) is a benchmark for solving a convex minimization model with linear constraints. We consider the special case where the objective is the sum of m functions without coupled variables. For solving this separable convex minimization model, it is usually required to decompose the ALM subproblem at each iteration into m smaller subproblems, each of which only inv...

متن کامل

The symmetric ADMM with positive-indefinite proximal regularization and its application

Due to update the Lagrangian multiplier twice at each iteration, the symmetric alternating direction method of multipliers (S-ADMM) often performs better than other ADMM-type methods. In practice, some proximal terms with positive definite proximal matrices are often added to its subproblems, and it is commonly known that large proximal parameter of the proximal term often results in “too-small...

متن کامل

A partially parallel splitting method for multiple-block separable convex programming with applications to robust PCA

We consider a multiple-block separable convex programming problem, where the objective function is the sum of m individual convex functions without overlapping variables, and the constraints are linear, aside from side constraints. Based on the combination of the classical Gauss–Seidel and the Jacobian decompositions of the augmented Lagrangian function, we propose a partially parallel splittin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016